Ruthenium-europium configuration in the Eu2Ru2O7 pyrochlore
S. Muñoz Pérez, R. Cobas, J. M. Cadogan, J. Albino Aguiar, S. V. Streltsov, and X. Obradors

Citation: Journal of Applied Physics 117, 17C702 (2015); doi: 10.1063/1.4906528
View online: http://dx.doi.org/10.1063/1.4906528
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/117/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Structure, magnetism, specific heat, and dielectric properties of Eu2Ta2O7

Anomalous electronic and magnetic properties of the Eu2Ru2O7 pyrochlore

Metallic state induced in Eu2Ru2O7 by hole creation and orbital overlap in the t 2g bands

The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst

Investigation of magnetic interactions in Ba 2 Eu Ru 1 − x Cu x O 6 using magnetization and Eu 151 Mössbauer studies
J. Appl. Phys. 97, 10A907 (2005); 10.1063/1.1849711
Ruthenium-europium configuration in the Eu$_2$Ru$_2$O$_7$ pyrochlore

S. Muñoz Pérez,1,a R. Cobas,1 J. M. Cadogan,1 J. Albino Aguiar,2 S. V. Streltsov,3,4 and X. Obradors5

1School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra, ACT 2610, Australia
2Department of Física, Universidad Federal de Pernambuco, Av. Prof. Luis Freire, s/n, 50670-901, Recife-PE, Brazil
3Institute of Metal Physics, Ekaterinburg 620219, Russia
4Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Ekaterinburg 620002, Russia
5Institut de Ciència dels Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Spain

(Presented 5 November 2014; received 20 September 2014; accepted 9 October 2014; published online 27 January 2015)

The magnetic and electronic properties of Eu$_2$Ru$_2$O$_7$ are discussed in terms of the local ruthenium and europium coordination, electronic band structure calculations, and molecular orbital energy levels. A preliminary electronic structure was calculated within the local density approximation (LDA) and local spin density approximation taking in to account on-site Hubbard U (LSDA + U). The molecular orbital energy level diagrams have been used to interpret the Eu-Ru ligand spectrum and the ensuing magnetic properties. The orbital hybridizations and bonds are discussed. © 2015 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4906528]

I. INTRODUCTION

Ruthenium compounds with the pyrochlore structure A$_2$B$_2$O$_6$O$^\circ$ (where A = rare earth) exhibit a lambda-like specific heat jump at a temperature T_1 (between 60 K and 170 K) due to a quasi-long-range antiferromagnetic (AFM) ordering of the Ru$^{4+}$ sublattice. This magnetic ordering of the Ru sublattice creates a molecular field at the A site, which polarizes the rare earth (RE) magnetic moments and is sufficient to induce magnetic order in all the magnetic RE ions, one would expect an intrinsic behaviour similar to that observed in the Y and Lu pyrochlores where no magnetic ordering of the Ru$^{4+}$ sublattice orders at T_1, as expected, but a second prominent magnetic transition occurs at a lower temperature despite the fact that Eu$^{3+}$ is presumed to be in its non-magnetic 7F_0 ground state. Due to the usual non-magnetic nature of the Eu$^{3+}$ ions, one would expect an intrinsic behaviour similar to that observed in the Y and Lu pyrochlores where no magnetic transitions occur at low temperatures. However, due to difficulties in performing neutron scattering experiments on Eu-based compounds, the precise nature of the observed ordering remains unknown.

II. EXPERIMENTAL RESULTS

The Eu$_2$Ru$_2$O$_7$ powder sample was prepared by solid state reaction as described in Ref. 9. Structural characterization was done by synchrotron X-ray powder diffraction (SXRD) using $\lambda = 0.39468(1)$ Å.

Rietveld analysis of the SXRD pattern obtained at 300 K, using the FullProf suite, shows single-phase Eu$_2$Ru$_2$O$_7$ with the $Fd\bar{3}m$ space group (see Fig. 1(a)). No crystallographic transition was observed at low temperatures.

The dc-susceptibility and transport measurements were made in a Superconducting Quantum Interference Device (SQUID) magnetometer and a Physical Properties Measurements System (PPMS), respectively. The Ru sublattice orders at $T_1 \sim 118$ K and a second major divergence between the field-cooled (FC) and zero-field cooled (ZFC) susceptibilities occurs below $T_2 \sim 23$ K as shown in Fig. 2(a).

The temperature dependence of the electrical resistivity indicates a semiconductor to insulator transition with a dramatic increase in resistivity below 75 K (see Fig. 2(b)).

III. THEORETICAL RESULTS AND DISCUSSION

The magnetic and electronic properties of Eu-pyrochlore compounds are special amongst all the RE because of the particular $4f^6$ energy level structure of the Eu$^{3+}$ ions.

In the Eu$_2$Ti$_2$O$_7$ pyrochlore, it has been shown that the europium ions experience a nearest-neighbour exchange interaction with a weak dipolar interaction below 4 K. More interestingly, luminescence studies of Eu$_2$Ti$_2$O$_7$ and Eu$_2$Sn$_2$O$_7$ reveal that after excitation into the 7D_0 level, the emission lines below 20 K are due to $^2D_0 \rightarrow ^2F_{0,2}$, $^2D_0 \rightarrow ^2F_{1,3}$, and $^2D_0 \rightarrow ^2F_{2}$ transitions. At low temperatures, the emission peaks are dominated by trap emission due to direct energy transfer from intrinsic Eu$^{3+}$ ions to the extrinsic europium ions. The nature of the extrinsic europium has been ascribed to a considerable degree of anion disorder, covalency/ligand polarizability, and vacancies.

![FIG. 1. SXRD pattern of Eu$_2$Ru$_2$O$_7$ obtained at 300 K.](Image)
In the pyrochlore structure, the $Fd\bar{3}m$ symmetry fixes the positions of all ions except for the oxygen in the 48f site (O_{48f}).

The 16d site is coordinated by six O_{48f} ions and two O' ions, which might suggest that cubic symmetry would be a good approximation. However, the site is strongly distorted from 8-fold cubic. The x_{48f} parameter determines the degree of distortion of the REO_8 cube and RuO_6 octahedron as a result of a compression or expansion through the C_3 symmetry axes.

In Eu$_2$Ti$_2$O$_7$, Eu$_2$Ru$_2$O$_7$, and Eu$_2$Sn$_2$O$_7$, the Eu$^{3+}$ ions occupy the 16d lattice site with a point symmetry 3m (D_{3d}). However, local disorder arises when some of the O' ions, originally occupying the 8b positions (O_{8b}), leaves the site vacant. This creates perturbed sites having different energies for the adjacent europium ions. Consequently, the D_{3d} symmetry of the perturbed ions is lowered to C_s, and based on the Wybourne-Downer mechanism the presence of a small crystal field (CF) term in the Hamiltonian could induce the transitions $^5D_0 \rightarrow ^7F_0$ and $^5D_0 \rightarrow ^7F_2$ due to the CF induced J-mixing effect.

On the other hand, according to the Judd–Ofelt theory, the $^5D_0 \rightarrow ^7F_1$ electric dipole transitions are forbidden, but this is not the case for a magnetic dipole transition. Therefore, the observations, at low temperature, of emission lines in the spectral region corresponding to $^5D_0 \rightarrow ^7F_1$ transitions and energy transfer mechanism suggest that the interaction between the europium ions is exchange-based in character.

Since the structural parameters of Eu$_2$Ru$_2$O$_7$ are intermediate between those of the isomorphous Eu$_2$Ti$_2$O$_7$ and Eu$_2$Sn$_2$O$_7$, the observed decrease of the FC $1/\mu_B$ below 23 K might be associated with such an exchange mechanism present in Eu$_2$Ti$_2$O$_7$ and Eu$_2$Sn$_2$O$_7$. In addition, the Ru$^{4+}$ ions create an exchange field acting on the Eu$^{3+}$ ions, which significantly enhances the europium exchange interactions, as demonstrated by the dramatic increase in ordering temperature for Eu$_2$Ru$_2$O$_7$ (23 K) compared to Eu$_2$Ti$_2$O$_7$ (4.9 K).

Figure 3 shows a view along the z-axis of the 3D Kagomé lattice for Eu$_2$Ru$_2$O$_7$. A preliminary Eu$_2$Ru$_2$O$_7$ electronic structure was calculated within the LDA and LSDA $+$ U approximations using the Stuttgart TB-LMTO-ASA code. The muffin-tin sphere radii were taken to be 2.87 a.u., 2.36 a.u., and 2.05 a.u. for Eu, Ru, and O, respectively. In our LMTO calculations, we used the von Barth-Hedin exchange correlation potential.

The Eu(6s,6p,5d,4f), O(2s,2p,3d) and Ru(5s,5p,4d) orbitals were included in the basis set. The Brillouin-zone (BZ) integration in the course of self-consistency iterations was performed over a mesh of 64 k-points. Parameters of the onsite Coulomb repulsion (U) and Hund’s rule coupling (J_H) for Ru were calculated in Refs. 26 and 27, and taken to be the same ($U = 3.0$ eV and $J_H = 0.7$ eV). For the Eu-4f shell, they were chosen to be $U = 6.8$ eV and $J_H = 0.7$ eV. The spin-orbit interaction was not taken into account. The calculations were performed for the crystal structure corresponding to $T = 5$ K. In spite of the absence of detailed information about the exact magnetic structure of this compound, we assumed that half of the Ru ions in the unit cell has one direction of spin, with the second half—opposing. As a result, our choice of AFM structure corresponds to the situation where four out of six neighboring Ru have opposite spins. The europium ions that were chosen to be nonmagnetic in the beginning of the calculation according to the usual Hund’s rule did not magnetize later, whereas the local magnetic moment on the Ru ions was found to be 1.53 μ_B.

An analysis of the occupation matrix shows that Ru has an intermediate spin configuration: $t_{2g}^{4}e_{g}^{0}$. The single electron in the spin-minority band localizes on a nearly trigonal a_{1g} orbital. The origin of the stabilization of this intermediate spin-state configuration lies in a strong crystal-field splitting Δ_{ee} between the t_{2g} and e_{g} shells. From the nonmagnetic LSDA $+$ U calculation, where U was applied only to the Eu-4f states (to shift them away from the Fermi level and prevent charge overlapping), we estimated the crystal field splitting (as the difference between the corresponding centers of the bands) to be $\Delta_{ee} = 3.04$ eV. For the d^{0} configuration, a high spin-state may be realized only in the case when...
3J_H > Δ_{cc}. This condition is not fulfilled for Eu_2Ru_2O_7. This explains the stabilization of the intermediate spin-state in the full LSDA + U calculation.

Total and partial densities of states (DOS) obtained for Eu_2Ru_2O_7 within the LSDA + U calculation are presented in Fig. 4. One may see that this compound is an insulator with a band gap ξ = 0.18 eV (in the normal LDA, without accounting for the strong on-site Coulomb correlations, Eu_2Ru_2O_7 was found to be a metal). Both the top of the valence band and the bottom of the conduction band are formed by Ru-4d states, showing that this compound should be considered as a Mott-Hubbard insulator in the Zaanen-Sawatzky-Allen classification scheme.29 The O-2p states are located from −8 eV to −2 eV.

In order to show that exchange field due to the Ru ions in Eu_2Ru_2O_7 is strong enough, we calculated the exchange constants for the Heisenberg model (written as Σ_{ij}JS_{ij}; sum runs twice over each pair) finding the energy variation of the system under small spin rotation.30 The O-2p states are located from −8 eV to −2 eV.

From the viewpoint of MO theory, forming a metal complex involves the reaction between a ligand (Lewis base) and a metal or metal ion (Lewis acid) to establish coordinate covalent bonds between them.31

The electronic properties calculated for Eu_2Ru_2O_7 could be improved by choosing different U and J values. For instance, different U values may change the occupation of the 4f orbitals.

B. Molecular orbital energy diagram

From the viewpoint of MO theory, forming a metal complex involves the reaction between a ligand (Lewis base) and a metal or metal ion (Lewis acid) to establish coordinate covalent bonds between them.31

Our model for Eu_2Ru_2O_7 uses the hybridizations of the p and d orbitals to describe the magnetic and electronic properties.

The Ru-O bonds for a ruthenium atom 6-coordinated with symmetry D_{3d} are achieved through hybridization, using the linear combination of three 4d (dx^2−y^2, dz^2) and three 5p (px, py, pz) atomic orbitals to form six energy equivalents d^p hybrid orbitals directed towards the vertices of a trigonal antiprismatic polyhedron.

Using the magnetic criterion from our electronic calculations where ruthenium has a t_{2g} eg intermediate spin configuration, one electron must be promoted from the 4d orbitals towards the 5p as shown in Fig. 5. These hybrid orbitals have the correct symmetry and participate in the σ and π type bonds with the O_{3d} to form the valence band (bonding state). The orbitals dxy, dxz, and 5s^0 form the conduction band (nonbonding state). This configuration allows the formation of a valence band with four σ bonds (each bond consists of two electrons, one from the metal and one from the O_{3d}) and two π bonds. The theory also shows that electron pairs involved in a π bond are provided by the sp^3 hybrid oxygen orbitals, as shown in Fig. 5(b).

Figure 6 shows a qualitative energy level diagram for Eu_2Ru_2O_7. The RuO_6 electronic configuration considering the σ, π bonds and the D_{3d} symmetric can be written as a_1g^2t_{2g}^1e_g^0 or simply t_{2g}^2. In agreement with the electronic calculation, the energy levels below and above the Fermi level (E_F) have mainly t_{2g} character.

The ionic/covalent bonds O_{3d}-Eu^{3+}-O_{3b} and the excited state 7F_1 for the extrinsic europium ions are located at the bottom and top of the central t_{2g}^4 region, respectively.

Our transport data obtained in the intermediate and high field regimes follow a Mott Variable Range Hopping (VRH) or Efros-Shklovskii mechanism.32 Since the e_g^2 electrons are highly localized, a soft Coulomb gap Γ_c of around ~0.29 eV can be interpreted as an increase in the density of states close to and above the E_F due to the excited states from the extrinsic Eu^{3+}.

The d-band carriers play the major role in the electrical conductivity; however, they cannot explain the magnetic transition at T_1 nor the sudden increase in the resistivity at low temperature. We also observed a negative magnetoresistance above the spin-freezing temperature T_1 and a positive magnetoresistance below this temperature, indicative of a high degree of spin polarization of the conduction electrons at low temperatures.

The interplay of such orbital degrees of freedom and spins in the pyrochlores has been known to accommodate a rich variety of phenomena. In Eu_2-xCa_xRu_2O_7 and Eu_2-xRe_xRu_2O_7, a delicate balance between the localized and delocalized states evolves towards a metal-like behaviour.26,33 On the other hand, Tl_2Mn_2O_7 and Tl_2Ru_2O_7 show colossal magnetoresistance and spin gap formation, respectively.
IV. CONCLUSION

In summary, our results suggest that the Eu-ions play an important role in determining the electrical and magnetic properties of the Eu$_2$Ru$_2$O$_7$ pyrochlore observed at low temperatures. The calculated magnetic moment of the ruthenium ions is 1.53 μ_B. The ruthenium 4d electrons promote or enhance the Eu-Eu exchange interaction, though the exact mechanism for the Eu-Ru coupling is not clear. Meanwhile, the presence of a Coulomb gap in the magnetic structure might result in serious disruption of the electrical properties, significantly shifting the $\rho(T)$ curve from the Mott-Hubbard tendency. Therefore, a detailed experimental description of the Eu$^{3+}$ 7F_j excited states will be crucial to obtain a more accurate explanation of the observed behaviour at low temperature.

ACKNOWLEDGMENTS

We acknowledge financial support from the Alban Program, MICIN (CONSOLIDAR NANOSELECT, CSD2007, MAT2005-02047, MAT2006-26543-E), UNSW Australia, NSERC and Brazilian agencies CAPES, CNPq (grants 307552/2012-8 and 484504/2013-4) and FACEPE. Theoretical calculations done by S. Streltsov were supported by Russian Science Foundation (RNF 14-22-00004).